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On pool spreading around tanks: Geometrical considerations
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Abstract

The paper discusses a straightforward approach for evaluating the distance covered by a spreading liquid pool, when the axisymmetric hypothesis
is no longer valid. This distance is evaluated by a three-steps methodology: the pre-processing of input data (bund radius, if present, and radial
velocity); the simulation of pool spreading by a model based on the axisymmetric hypothesis; and the post-processing of results. The paper reports
some geometrical correlations to pre- and post-process the data, with regard to four case-studies. Some numerical examples are also presented to
prove that the pre-processed input data and post-processed results differ from those based on the axisymmetric hypothesis. Finally, we validate
our modeling approach with the experimental data of Cronin and Evans [P.S. Cronin, J.A. Evans, A series of experiments to study the spreading

of liquid pools with different bund arrangements, HSE Contract Research Report 405/2002, Advantica Technologies Limited, 2002].
© 2008 Elsevier B.V. All rights reserved.
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. Problem statement

The modeling of chemical accidents involves the determi-
ation of the potential accident outcomes and their impact on
eople, facilities, properties, communication networks, and so
orth. Both emergency preparedness and response activities are
nvolved in the modeling of accidents to determine the distance
t which certain dangerous thresholds are exceeded (the toxic
hreshold in case of gas releases; the radiative heat flux for fires;
he overpressure for explosions). By doing so, the emergency
reparedness can significantly improve the mitigation of adverse
onsequences as well as the emergency planning. Conversely,
nder emergency response, such information may help identify-
ng the proper actions (alarms, evacuation procedures, workers
escue, etc.).

This paper deals with the accident modeling, by re-examining
well-known phenomenon from a new perspective. In particular,

he attention is focused on accidents involving the spillage of a
iquid onto a surface (i.e., liquid pools). We will try to answer

he question: which shape will the liquid pool take?

The literature models for risk assessment (e.g. [1–7]) charac-
erize the pool evolution in terms of pool radius, height, volume,
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nd temperature. They consider also the discharge rate of liquid
nto the pool and the evaporation rate from the pool. When work-
ng in the field of risk assessment, it is mandatory to model both
he pool radius and the evaporation rate. The evaporation rate
nd the pool area allow evaluating the vapor emitted to the atmo-
phere and then dispersed. On the other hand, the pool radius
orresponds to the extent of liquid pool that influences the area
nvolved in the accident and, consequently, the arrangement of
he mitigation system as well as the emergency planning. There-
ore, when a liquid spreads onto a surface, the estimation of the
ool radius is an important step in risk assessment.

Usually, literature models consider a punctiform release that
s perfectly perpendicular to the surface. In other words, these

odels evaluate the pool dynamics according to the axisymmet-
ic hypothesis, i.e., the pool spreads in all directions at the same
elocity. Consequently, the spreading pool has a circular shape
nder the axisymmetric hypothesis.

However, we will determine some geometrical correlations
o remove this restrictive hypothesis. In fact, when a liquid is
oured onto a surface, it can spread in several directions with
different velocity, and consequently it assumes a different

hape, which depends on the pouring conditions. The circular

ool is only an abstraction that makes simpler the modeling of
he pool spreading, but, under real conditions, it probably never
ccurs. Nonetheless, literature models assume the axisymmetric
preading [1,4–6].

mailto:davide.manca@polimi.it
dx.doi.org/10.1016/j.jhazmat.2008.01.049
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Nomenclature

A area (m2)
A, B intersection points
r radius (m)
u radial velocity (m/s)
x, y reference frame coordinates

Greek letters
α, θ angles (rad)

Subscripts
axi axisymmetric case
B bund
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e corrected value
P pool

Let us now consider the following trivial examples. If one
ours some water (from a bottle onto a table) perfectly perpen-
icular to the surface, the water will spread in all directions at the
ame velocity (axisymmetric spreading), giving rise to a circular
ool. On the other hand, if one knocks over a glass of water, the
ool will take a shape that is more similar to a long and narrow
llipse than to a circle.

An example closer to the chemical industry is a liquid spill
rom a hole in a process unit (a reactor, a tank, a pipe, etc.).
et us assume that there is a hole in a tank. The tank itself and

he neighboring equipment will affect the pool shape, since the
preading liquid may reach the tank wall and assume neither
circular shape nor an elliptical one. In addition, the impact

ngle between the surface and the liquid jet will influence the
ool shape. If the liquid jet is not perpendicular to the surface,
he pool will take an elongated shape in the direction of the jet,
ue to the leading velocity in that direction.

This paper proposes some geometrical correlations to deter-
ine the pool extent, depending on the accidental circumstances.
e do not develop a new model, because it is not a trivial activity

nd we should develop ad hoc models for each specific situa-
ion, losing both the generality and the wide applicability of
esults. Instead, we suggest some geometrical formulae to con-
ert the input and output data of the available literature models
hat assume an axisymmetric spreading, because these mod-
ls are consolidated, well accepted, and validated. By doing
o, the results we bring forth can be used to model the pool
preading and/or shrinking by means of a literature model based
n the axisymmetric hypothesis. Afterward, the output results
an be post-processed to adapt them to the relative pool-tank
rrangement.

We are proposing some geometrical correlations that should
e implemented to pre-process the input data as well as to post-
rocess the output results of the spreading simulator.

As far as the input data are concerned, the variables that must

e pre-processed, in order to translate the real world conditions to
he ideal representation, according to the axisymmetric hypoth-
sis, are the bund radius (if present) and the radial velocity. The
adial velocity is the edge velocity of the pool, i.e., the spread-

r
a
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ng rate. If the liquid is discharged with a null component of
he velocity parallel to the surface, then the radial velocity is
nfluenced only by the pool height (liquid head) and by the fric-
ion between the pool and the underlying surface. Conversely,
he discharge velocity influences the pool radial velocity. In the
ormer case, the liquid hits the ground perfectly perpendicular,
hilst in the latter, the liquid jet is inclined respect to the vertical

nd there is a component of the velocity parallel to the surface.
herefore, the radial velocity must be pre-processed because it
ffects the spreading rate and the pool extension.

With reference to the output data, the pool radius is the vari-
ble that must be post-processed. Actually, we make use of
he results from a model based on the axisymmetric spreading
ypothesis to evaluate what happens in the real world.

We developed the aforementioned geometrical correlations
o provide a more realistic picture of the liquid pool and its dis-
ance from the process units. These correlations where intended
o transform the output results of real-time accident simulation
rograms. This kind of accident simulators is particularly suited
or the emergency response as well as operator training. Obvi-
usly, computational fluid dynamics (CFD) programs are not
uitable for these objectives. CFD programs might enhance the
ealism, but they are still too time-consuming.

In the following sections, we will discuss some case-studies
oncerning the radial spreading of a liquid around a cylindrical
ank, and the spreading of a pool spilled from a hole in both

parallelepiped and cylindrical tank. Finally, to validate the
roposed correlations, we compare our numerical simulations
ith a set of experimental data [8].

. Case-studies

This section discusses four case-studies, representative of
he problem under consideration. Further alternatives can be
dded by modifying the environment surrounding the pool or
he leakage conditions.

For each case-study, we describe how to re-evaluate the bund
adius, the radial velocity (input data) and the pool radius (out-
ut data). Case-study 1 introduces the axisymmetric hypothesis
reference case); case-study 2 discusses the radial spreading of
liquid around a cylindrical tank; while case-studies 3 and 4

nalyze the spreading of a pool spilled from a hole, respectively,
n a parallelepiped and in a cylindrical tank. For each case-study,
e work with a conventional literature model that simulates the

implified and ideal axisymmetric spreading but we also need to
ranslate the required input data and the output simulated results
o get a correct interpretation of what effectively happens in the
eal world.

All the figures, reported in the following, are top views of the
roposed case-studies. In addiction, the liquid will be cyan, the
ank bright-gray, and the bund dark-gray.

.1. Case-study 1: the axisymmetric pool
The axisymmetric, circular pool, represented in Fig. 1, is the
eference case. By assuming that the pool radius is rP, the pool
rea can be evaluated as: AP,axi = πr2

P.
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Fig. 1. Reference case—the axisymmetric pool.
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value useful for the axisymmetric model by assuming that
Fig. 2. Reference case—bund representation.

If a bund is present (i.e., the dark-gray corona of Fig. 2) its
nternal radius is rB,axi, and the pool will not spread over it. In
hat case, the area confined within the bund is: AB,axi = πr2

B,axi.
The reference case identifies the pool radial velocity as u.

.2. Case-study 2: radial spreading around a cylindrical
ank

If a uniform liquid leakage occurs around the whole perimeter
f the tank, the spreading pool will assume a corona geometry,
s represented in Fig. 3 (cyan in web version), where the tank
akes up the internal portion (bright-gray). In this condition, the
ool radius is defined as the “corrected radius” and assumes the
ollowing symbology: re.
First, we want to evaluate the corrected radius re from the
utput results of a model based on the axisymmetric spreading
ypothesis that evaluates the conventional pool radius rP as a
unction of time. We suggest to determine the corrected radius,

Fig. 3. Radial spreading around a cylindrical tank.
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e, by assuming that the pool volume is the same both in this case
nd in the reference one. Also, we assume that the pool height is
ractically the same independently of the spreading hypothesis,
.e., either for the circular pool or the corona one. Consequently,
e propose the conservation of pool areas between the ideal and

eal models.
For the corona geometry, the pool area is

P = π(r2
e − r2

T)

Then, by making it equal it to the pool area of the reference
ase:

P,axi = AP ⇒ πr2
P = π(r2

e − r2
T)

he corrected radius follows:

e =
√

r2
P + r2

T (1)

The difference between re and rP increases with the tank
adius.

If a circular bund of radius rB surrounds the tank, as shown in
ig. 4, its radius must be pre-processed to perform a simulation
ith a model based on the axisymmetric hypothesis. By doing so,

ven for the axisymmetric simulation, the pool does not spread
ndefinitely, but its extent is limited.

If we assume that the bund of the reference case encloses the
ame area as the current bund, then

B,axi = AB ⇒ πr2
B,axi = π(r2

B − r2
T)

Therefore, with reference to the model based on the axisym-
etric hypothesis, the bund radius (rB,axi) is:

B,axi =
√

r2
B − r2

T (2)

The difference between rB,axi and rB increases with the tank
adius.

If a bund is present, Eq. (1) is valid as long as re < rB.
If the pool has a radial velocity ue, it can be translated into a
e = dre

dt

ig. 4. Radial spreading of a pool around a cylindrical tank, when a bund is
resent.
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nd by substituting Eq. (1):

dre

dt
= rP√

r2
P + r2

T

drP

dt

Recalling that

drP

dt
= u

t is possible to derive

= ue

√
r2

P + r2
T

rP
(3)

The difference between ue and u increases with the tank
adius.

.3. Case-study 3: pool spreading from a hole in a
arallelepiped tank

When a hole forms in a process unit full of liquid, the liquid
pills and a pool spreads in front of it. In this case, we assume
hat the apparatus is a parallelepiped tank and the pool takes up
semicircular shape in front of it (see Fig. 5).

Again, by assuming the pool area conservation hypothesis:

P,axi = AP ⇒ πr2
P = πr2

e

2

he corrected pool radius becomes

e =
√

2rP (4)

The tank dimension does not affect the corrected radius.

If a bund at a distance rB from the tank wall is present, for

he configuration showed in Fig. 6, we consider two consecutive
hases. The first phase finishes when the pool reaches the bund
nd the corrected radius is evaluated according to Eq. (4).

Fig. 5. Semicircular pool in front of a parallelepiped tank.

s

A

Fig. 6. Semicircular bund in front of a parallelepiped tank.

When the pool reaches the bund, it changes its shape and starts
preading laterally, up to completely filling the bund. Further-
ore, the contact of pool with the bund can generate a reflected
ave. Therefore, the hypothesis on pool area conservation could
ot be valid to simulate the situation shown in Fig. 7.

As aforementioned, this is a rather simplified analysis, so
he determination of any geometrical correlations to describe
he evolution of the pool, until the bund filling, is beyond the
urpose of this paper. Therefore, our modeling approach cannot
haracterize the whole pool behavior up to the bund filling, but
t gives an idea of the phenomenon, even if only for a limited
eriod (as long as re < rB).
We choose to evaluate the bund radius for the axisymmetric
imulation from the total area of the real bund:

B,axi = πr2
B,axi = AB (5)

Fig. 7. Pool elongated laterally.
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=
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If the pool has a radial velocity ue, before the pool reaches
he bund, it can be translated into a corresponding value for the
xisymmetric model by assuming that

e = dre

dt
=

√
2

drP

dt
=

√
2u

hich means

= ue√
2

(6)

.4. Case-study 4: pool spreading from a hole in a
ylindrical tank

As in the previous case, in this section we are considering
he formation of a pool in front of a tank, but here, the tank
s cylindrical. In this case, we assume that the leakage forms

semicircle pool in front of the tank, as shown in Fig. 8. In
he real situations, the pool boundary will not be so sharp, but
his simplification allows performing an easier analysis. In the
ollowing, we discuss also a more detailed analysis.

By applying, once again, the pool area conservation hypoth-
sis:

P,axi = AP ⇒ πr2
P = π

2
r2

e

he corrected radius is

e =
√

2rP (7)

In this case, the tank dimension does not affect the corrected
adius.

If a bund is present, as in the configuration of Fig. 9, the
revious analysis, i.e., Eq. (7), is valid till the pool reaches the
und: re = rB − rT.

After that, the pool starts spreading laterally, as sketched in
ig. 10 and a reflected wave may form.

As in the previous case, this approach cannot completely

escribe the liquid behavior, but it gives an idea of the phe-
omenon, even if only for a limited period (re < rB − rT).

The bund radius for the axisymmetric case can be evaluated
y considering that the bund contains the same volume of liquid

ig. 8. Semicircular pool in front of a cylindrical tank: simplified representation.
ig. 9. Semicircular bund in front of a cylindrical tank: simplified representation.

and consequently the same pool area):

B,axi = AB ⇒ πr2
B,axi = π(r2

B − r2
T)

ence

B,axi =
√

r2
B − r2

T (8)

The difference between rB,axi and rB increases with the tank
adius.

If the pool has a radial velocity ue, it can be translated into a
seful value for the axisymmetric model by assuming that
Fig. 10. Lateral spreading of the pool.
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ig. 11. Semicircular pool in front of a cylindrical tank: a more realistic repre-
entation.

hich means

= ue√
2

(9)

A more realistic representation will lead to the condition
ketched in Fig. 11, where the pool surrounds the tank, due also
o the surface tension among the liquid, the ground, and the tank
kin.

In this case, the procedure for deriving the corrected radius
e is not explicit but numerical: it requires the solution of a non-
inear algebraic equation. The tank and the pool are represented
ike two circumferences on the same axis (see Fig. 12), which
ntersect at points A and B.

The first step requires determining the equations of the two
ircumferences. We assume that the center of the circumference
epresenting the tank is the center of the x–y-axes, while the
enter of the pool is at the tank wall on the x-axis. It follows:

2 + y2 − r2
T = 0 for the tank
2 + y2 − 2rTx + r2
T − r2

e = 0 for the pool

Fig. 12. Geometrical schematization of the problem.
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Fig. 13. Area identification.

The following step involves the analytical determination of
he coordinates of points A and B:

A ≡
(

2r2
T − r2

e

2rT
; +re

√
1 − r2

e

4r2
T

)
,

B ≡
(

2r2
T − r2

e

2rT
; −re

√
1 − r2

e

4r2
T

)

The effective pool area is the dark-gray portion of the smaller
ircumference of Fig. 13.

The integral calculus allows determining this area. The effec-
ive pool area (A2) can be evaluated as the difference between
he dark-gray plus the bright-gray areas (A1 + A2) and the bright-
ray area (A1). Such a difference can be evaluated by means of
wo definite integrals (see Appendix A for more details).

By assuming that θ is the angle between the x-axis and the line
etween the center of the tank circumference and the intersection
oint A (see Fig. 20), the bright-gray is

1 =
∫ rT

xA

√
r2

T − x2 dx = r2
T(θ − sin θ cos θ) (10)

By assuming that α is the angle between the x-axis and the
ine between the pool center and the intersection point A (see
ig. 20), the area of the dark-gray plus the bright-gray portion

s

1 + A2 =
∫ rP

xA

√
2rTx − r2

T + r2
e − x2 dx

= r2
e (α − sin α cos α) (11)

Finally, the dark-gray area is

2 = (A1 + A2) − A1 = r2
e (α − sin α cos α) − r2

T(θ

− sin θ cos θ) (12)
To determine the corrected radius, re, this area must be equal
o the area of the reference case (i.e., the axisymmetric pool
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P,axi = πr2
P), that is:

r2
P = r2

e (α − sin α cos α) − r2
T(θ − sin θ cos θ) (13)

The trigonometric relations referred to the intersection points
llow determining the angles α and θ:

xA = 2r2
T − r2

e

2rT
= rT cos θ = rT + re cos α,

yA = re

√
1 − r2

e

4r2
T

= rT sin θ = re sin α

This means that it is not possible to find an explicit solution
ecause the corrected radius, re, is present in both the expres-
ions of α and θ. Therefore, we have to solve numerically Eq.
13) to find re. This analysis is correct up to re ≤ 2rT, because
or re > 2rT there are no more intersection points between the
wo circumferences.

If we adopt the bisection method for the root-finding, we
eed two extremes of an interval [a, b] where the function
hanges sign. In this case, the two extremes are zero and twice
he tank radius. As far as the Newton method is concerned, a
ossible first guess point is the value of the axisymmetric pool
adius.

Fig. 14 sketches the condition when a bund is present. The
und radius for the axisymmetric case can be evaluated as

B,axi = AB ⇒ πr2
B,axi = π(r2

B − r2
T)

hen √

B,axi = r2

B − r2
T (14)

As in the previous case, when the pool reaches the bund, it
tarts spreading laterally and a reflected wave may form. There-

ig. 14. Semicircular pool in front of a cylindrical tank: presence of the bund.
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ig. 15. The corrected radius as a function of the pool axisymmetric radius,
ssuming a tank radius of 5 m (solid line). The dashed line is a linear approxi-
ation of the solid line.

ore, the solution of Eq. (13) allows evaluating the pool radius
hen re ≤ rB − rT.
By assuming the same notation of Fig. 10, the total extent of

he pool is

(rB − rT) + rL2 (15)

The conversion of the radial velocity from ue to u calls for
etermining the relation between re and rP, and eventually the
elation between dre/dt and drP/dt. Since the relation between re
nd rP is not explicit, we cannot determine an explicit relation
etween ue and u. Consequently, we will try to approximate the
elation between ue and u.

Fig. 15 sketches the corrected radius versus the pool radius,
or a cylindrical tank of 5 m radius. The maximum corrected
adius is twice the tank radius, i.e., 10 m in this case. As a matter
f fact, the diagram would have the same trend for both small
nd big tanks. The relation between re and rP is almost linear.
hus, for our purpose, a straight line (dashed line of Fig. 15)
ell approximates such a relation. It is then possible to assume

he radial velocity for the axisymmetric simulation to be equal
o the radial velocity of the real configuration:

= ue (16)

.5. Summary of the case-studies

Table 1 summarizes the formulae discussed in previous sec-
ions.

In this section, we suggested some geometrical correlations
o evaluate the radii of the pool and the bund and the radial
elocity in some configurations differing from the reference case
hat is based on the axisymmetric hypothesis. These correlations
llow determining the distance covered by the liquid when it is

pilled from a process unit. In the following section, we discuss
he importance of the proposed modeling approach by showing
he difference between the distance reached by the pool in the
eference case and that covered in real conditions.
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Table 1
Summary of formulae

Case (#) Description Corrected pool
radius (m)

Bund radius for the axisymmetric
case (m)

Radial velocity for the axisymmetric
case (m/s)

2 Radial spreading around a cylindrical
tank

re =
√

r2
P + r2

T rB,axi =
√

r2
B − r2

T u = ue

√
r2
P+r2

T
rP

3 Pool spreading from a hole in a
parallelepiped tank

re = √
2rP rB,axi =

√
AB
π

u = ue√
2

4a Pool spreading from a hole in a
cylindrical tank (simplified case)

re = √
2rP rB,axi =

√
r2

B − r2
T u = ue√

2

4 r

3

d
v
a
T
p
p
s

3

r

t

r

a

u

(
b

A

a

r

u

(

r

w

u

(

r

w

u

t
d

T
S

C

2

3

4

4

b Pool spreading from a hole in a
cylindrical tank (more rigorous case)

Numerical
procedure

. Numerical examples

The input data of this section are related to the previously
escribed case studies, i.e., the bund radius, and the pool radial
elocity. First, we pre-process the input data that are required by
ny simulation models based on the axisymmetric hypothesis.
hen, we simulate the pool spreading. Eventually, we post-
rocess the maximum distance reached by the axisymmetric
ool to determine the corrected values of the real pool dimen-
ions.

.1. Pre-processing of data

We assume a cylindrical tank of 5 m radius, a bund of 10 m
adius, and an initial radial velocity of 1.3 m/s.

According to the radial spreading model around a cylindrical
ank (Section 2.2), the pool bund radius is

B,axi =
√

r2
B − r2

T =
√

(10)2 − (5.0)2 = 8.66 m

nd the radial velocity is

= ue

√
r2

P + r2
T

rP
= 1.3

√
(2.3)2 + (5.0)2

2.3
= 3.11 m/s

In case of pool spreading from a hole in a parallelepiped tank
Section 2.3), we assume that the tank and the bund have a square

ase, respectively, of 10 and 20 m. Hence, the total bund area is

B = r2
B − r2

T = 202 − 102 = 300 m2

u
C
+

able 2
ummary of the bund radii pre-processing

ase (#) Description Axis

Radial spreading around a cylindrical tank 8.66

Pool spreading from a hole in a
parallelepiped tank

9.77

a Pool spreading from a hole in a cylindrical
tank (simplified case)

8.66

b Pool spreading from a hole in a cylindrical
tank (more rigorous case)

8.66
B,axi =
√

r2
B − r2

T u = ue

nd the bund radius is

B,axi =
√

AB

π
=
√

300

π
= 9.77 m

Finally, the radial velocity is

= ue√
2

= 1.3√
2

= 0.92 m/s

In case of pool spreading from a hole in a cylindrical tank
simplified case, Section 2.4), the bund radius is

B,axi =
√

r2
B − r2

T =
√

(10)2 − (5.0)2 = 8.66 m

hile the radial velocity is

= ue√
2

= 1.3√
2

= 0.92 m/s

In case of pool spreading from a hole in a cylindrical tank
detailed case, Section 2.4), the bund radius is again

B,axi =
√

r2
B − r2

T =
√

(10)2 − (5.0)2 = 8.66 m

hereas the radial velocity is

= ue = 1.3 m/s

Tables 2 and 3 summarize the pre-processed data, respec-
ively, for the bund radius and the radial velocity, showing the
ifferences among the reference case and the real configurations.
The differences between the bund radius, for the real config-
ration, and its axisymmetric value range from −14 to −2%.
onversely, the radial velocity differences range from −30 to
139%.

ymmetric bund radius (m) Difference from the reference case (m)

−1.34

−0.23

−1.34

−1.34
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Table 3
Summary of the pre-processing of radial velocity

Case (#) Description Radial velocity (m/s) Difference from the reference
case (m/s)

2 Radial spreading around a cylindrical tank 3.11 1.81

3 Pool spreading from a hole in a parallelepiped tank 0.92 −0.38
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a Pool spreading from a hole in a cylindrical tank (simplified

b Pool spreading from a hole in a cylindrical tank (more rigo

We can conclude that the data pre-processing (for accident
imulation) can lead to bund radii and radial velocities that differ
ignificantly from the reference case based on the axisymmetric
ypothesis.

.2. Post-processing of data

Once the input data are pre-processed, it is possible to perform
simulation based on the axisymmetric hypothesis for each case-
tudy. For the reference case, the pool reaches a maximum radius
f 2.3 m and the maximum distance covered by the liquid is twice
hat value: 4.6 m.

With reference to a real case-study based on the radial spread-
ng around a cylindrical tank (Section 2.2), the corrected pool
adius is

re =
√

r2
P + r2

T =
√

(2.3)2 + (5.0)2 = 5.5 m

In other words, the pool arrives at a distance of 0.5 m from the
ank wall, which is quite smaller than the 4.6 m value determined
y adopting the hypothesis of axisymmetric spreading.

In case of pool spreading from a hole in a parallelepiped tank
Section 2.3), the corrected pool radius (i.e., the distance covered
y the pool) is

e =
√

2rP =
√

2(2.3) = 3.25 m

As in previous case, the distance reached by the pool is lower
han that evaluated by the reference case.
In case of pool spreading from a hole in a cylindrical tank
simplified case, Section 2.4), the pool corrected radius is

re =
√

2rP =
√

2(2.3) = 3.25 m

s
T
q

able 4
ummary of post-processed data (maximum pool radius)

ase (#) Description Po

Reference case 2.

Radial spreading around a cylindrical tank 5.

Pool spreading around a parallelepiped tank 3.

a Pool spreading around a cylindrical tank (simplified case) 3.

b Pool spreading around a cylindrical tank (more rigorous case) 3.
0.92 −0.38

ase) 1.3 0.00

This means that the pool will reach the distance of 3.25 m
rom the tank. As far as the more detailed representation is
oncerned, the numerical solution procedure determines a cor-
ected radius of 3.06 m, which is a bit lower than the simplified
ase. Table 4 summarizes the simulated results, showing the
ifferences among the reference case and the real configurations.

These examples show the importance of our corrected model.
he literature models based on the axisymmetric hypothesis are

oo conservative. Actually, a systematic over-prediction of the
aximum pool radius may be observed. We may observe rela-

ive errors between 30 and 90% respect to the standard literature
odels (based on the axisymmetric hypothesis). By adopting

he pool area conservation hypothesis, the evaporation (which is
function of the pool area) will be the same for all cases, but, if
pool fire develops, the flames may envelope a lower number of
rocess units. In addition, the heat radiative flux that impinges
he neighboring process units may be significantly different due
o the relative distance between the pool and the equipment
s well as the pool shape and correlated view factors. Conse-
uently, the mitigation systems (bunds, sprinklers, etc.) may be
ver-dimensioned if designed by considering the output results
rom the reference case (i.e., a model based on the axisymmet-
ic hypothesis). Eventually, the accidental scenarios would not
orrespond to the reality.

. Validation
Cronin and Evans [8] carried out a series of experiments to
tudy the spreading of water within circular and squared bunds.
he vessel, from which the water was released, represented a
uadrant of a storage tank of 1.75 m of radius (see Fig. 16).

ol radius (m) Distance from the
tank wall (m)

Difference from the reference
case (m)

30 4.60 –

50 0.50 −4.10

25 3.25 −1.35

25 3.25 −1.35

06 3.06 −1.54
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and it varies according to the liquid height in the tank.
ig. 16. Top view of the experimental apparatus used by Cronin and Evans [8].

The tank was filled with different amounts of water, from 3.5
o 4.3 m3, at ambient temperature. The liquid release mechanism
as put at the bottom of the tank, approximately at 2 cm from

he ground, on the whole tank perimeter. The release mechanism
llowed the water to flow from the tank onto a concrete pad. Sixty
esistance probes drowned in the concrete bund floor monitored
he movement of water.

The experiments from Cronin and Evans [8] involved three
ircular bund radii: 5, 7.1, and 10 m. In the first two cases, the
preading lasted less than 2 s, and our model for the simulation
f axisymmetric spreading is not valid for spreading times lower
han 1 s, as extensively reported in Webber and Jones [9]. There-
ore, we validated our modeling approach only with the third set
f data, related to water spreading into a bund of 10 m of radius.
ive experiments were carried out, by varying the initial water
eight in the tank (1.449, 1.880, 1.808, 1.800, and 1.805 m).

We made a comparison between the conventional model
axisymmetric hypothesis) and our approach (pre- and post-
rocessing of input an output data) looking at the simulation
esults of these models. As a common basis for the pool spread-
ng, we used the model of Brambilla and Manca [10]. We
ssumed the area conservation hypothesis within the bund,
hich means that the available area is the same for both the

xperimental data and the corresponding simulation. Hence, the
und radius is the only value that must be pre-processed. From
q. (2) we have

B,axi =
√

r2
B − r2

T =
√

(10)2 − (1.75)2 = 9.85 m

Subsequently, we simulated the five experiments, character-
zed by a different initial water level inside the tank. Fig. 17
ketches the simulation setup based on the axisymmetric hypoth-
sis. Aim of the simulations is determining the distance reached

y the water from the tank wall.

Fig. 18 reports the comparison between the experimental data
nd the simulated results (not corrected data). The maximum
istance reached by the axisymmetric pool is the axisymmet-

F
c
m
s

Fig. 17. Sketch of the axisymmetric simulation.

ic bund diameter, i.e., 19.7 m (upper dashed line), while the
aximum experimental distance is 8.25 m (lower dashed line).
ach simulated line corresponds to a different initial condition

different liquid level inside the tank).
We performed also a simulation based on the pre- and

ost-processing of the input and output data. We chose the
chematization discussed in Section 2.2. With reference to the
nput data, the radial velocity is evaluated as√
ig. 18. Comparison between experimental data (circles) and simulated, not
orrected, results (solid lines). The horizontal dashed lines quantify the maxi-
um distance reached by the spreading liquid pools (lower experimental, higher

imulated).
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ig. 19. Comparison between experimental data (circles) and simulated results
lines). The dashed line is the maximum distance reached by the spreading liquid.

As far as the output data are concerned, the corrected pool
adii were modified according to Eq. (1).

Fig. 19 shows the comparison between the experimental data
nd the outcomes from the pre- and post-processing simulation
odel.
The corrected pool radii are in quite good agreement with

he experimental data, especially for the time at which the water
eaches the bund. Again, we want to remark that, below 1 s, the
ifferences between the model and the experimental data are
ntrinsic of the model limitations.

According to this specific validation, we can conclude that
he modeling approach proposed in this paper is consistent in
eproducing the experimental data for the condition described
n Section 2.2. It is worth observing that our modeling approach
akes a little underestimation of pool radii respect to the experi-
ental data. On the other hand, without pre- and post-processing

he data, the overestimation of the maximum distance is too con-

ervative (see the solid lines of Fig. 18). Therefore, our modeling
pproach may be used consistently for design purposes as well
s for emergency planning.

Fig. 20. Schematization of the pool-tank geometry.
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We would like to emphasize that there is need for additional
xperimental data about the other conditions discussed in Sec-
ion 2, to confirm the correctness of our modeling approach.

. Conclusions

This paper made evident the importance of pre-processing
he input data (to go from the real condition to the axisymmet-
ic simulation) and post-processing the output results (to come
ack from the axisymmetric simulation to the real condition). In
act, under real conditions, the distances covered by the liquid
an significantly differ from those evaluated by the reference
ase. This is of particular importance when designing mitiga-
ion systems or discussing accidental scenarios for emergency
lanning. If one chooses to confine the spreading of released liq-
ids by building a bund around the possible epicenter, the design
imensions might be not proper for the real accident outcomes.
urthermore, a different arrangement of the mitigation systems,
uch as sprinklers, may be determined based on the modeling
pproach proposed in this paper.

The suggested approach is not a pure geometrical analysis.
onversely, it details a procedure for evaluating the most realistic
ool attributes. We developed the simplified correlations instead
f using a CFD code because CFD simulations are quite time
onsuming and cannot be applied when prompt accident simu-
ations are needed either for emergency response or for operator
raining.

The comparisons between our modeling approach and exper-
mental data show that they agree quite well, when applied to
he second case-study (the only experimental data available in
he literature). Further investigations are required to determine
similar agreement for the other case-studies.

ppendix A

In this section we give a detailed explanation on how to
etermine the corrected pool radius for the case-study 4b.

As mentioned before, the procedure for evaluating the cor-
ected radius re is not explicit, but it is numerical and involves
he evaluation of two definite integrals (see Fig. 20).

The bright-gray area of Fig. 13 can be evaluated as

1 =
∫ rT

xA

√
r2

T − x2 dx

since

= rT cos φ, y = rT sin φ

here φ is a generic angle between 0 and θ, this integral
ecomes:

1 = r2
T(θ − sin θ cos θ)

The dark-gray plus the bright-gray areas of Fig. 13 can be

valuated as

1 + A2 =
∫ rT+re

xA

√
2rTx − x2 + r2

e − r2
T dx
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since

= rT + re cos φ, y = re sin φ

here φ is a generic angle between 0 and α, this integral
ecomes:

1 + A2 = r2
e (α − sin α cos α)

The angles α and θ can be found from the trigonometric
elations referred to the intersection points:

A = 2r2
T − r2

e

2rT
= rT cos θ = rT + re cos α,

A = re

√
1 − r2

e

4r2
T

= rT sin θ = re sin α

Finally, the dark-gray portion of Fig. 13 can be evaluated as

2 = (A1 + A2) − A1 = r2
e (α − sin α cos α) − r2

T(θ − sin θ cos θ)
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